Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreType 1 diabetes is characterized by the destruction of pancrea tic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalaria drugs, and that enhancement of GABAA receptor signaling contributes to the mechanism of action of these molecules in pancreatic transdifferentiation. Our results in zebrafish, rodents and primary human pancreatic islets indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. SOURCE: Jin Li (jli21@bidmc.harvard.edu) - BIDMC
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team