PLX325385
GSE99265: MicroRNA-183 cluster continuously scales mechanical pain sensitivity by regulating basal and neuropathic pain gene pathways.
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Nociception is protective and prevents tissue damage but can also facilitate chronic pain. If a general principle governs these two types of pain is unknown. Here, we show that both basal mechanical and neuropathic pain are controlled by microRNA-183 cluster in mice. This single cluster controls more than 80% of neuropathic pain-regulated genes and scales basal mechanical sensitivity and mechanical allodynia by regulating auxiliary voltage-gated calcium channel subunits a2d.; Basal sensitivity is controlled in nociceptors and allodynia involves TrkB+ light-touch mechanoreceptors. These light-touch sensitive neurons that normally do not elicit pain produce pain during neuropathy that is reversed by gabapentin. Thus, a single miRNA cluster continuously scales acute noxious mechanical sensitivity in nociceptive neurons and suppresses neuropathic pain transduction in a specific, light-touch sensitive neuronal type recruited during mechanical allodynia. SOURCE: Patrik Ernfors (patrik.ernfors@ki.se) - Molecular Neurobiology Karolinska Institutet
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team