Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreDynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in T-cells, which confirmed regulation of cytokine expression and revealed unanticipated actions in regulating T-cell activation and proliferation. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, most robustly through a novel class of AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T-cell activation kinetics by attenuating activation marker expression, limiting T-cell expansion, and promoting apoptosis in a cell autonomous manner. Strikingly, loss of ZFP36 in vivo accelerated T-cell responses to acute viral infection, and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T-cell expansion and effector functions, and suggest ZFP36 inhibition as a novel strategy to enhance immune-based therapies. SOURCE: Robert Darnell Rockefeller University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team