PLX314735
GSE95853: Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Background: Increasing evidence indicates stem cell transplantation may be an effective stroke treatment but little is known about the direct impact of transplanted cells on injured brain tissue. We investigated the effects of lineage negative murine hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation following ischemia-reperfusion injury (I/RI). Following subsequent evaluation of the mRNA transcriptome of the explanted HSPCs, we assessed whether metallothionein (MT)-1, (increased in explanted HSPCs from I/R mice) administration was able to evoke similar neuro-protection following cerebral I/RI.; Methods and Results: Murine HSPCs administered intravenously 24 hours (h) post cerebral I/R were selectively recruited to the brain of I/RI mice. Mice treated with HSPCs displayed decreased disease severity for up to 2-weeks post cerebral I/R, as evidenced by decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation and elevated plasma levels of anti-inflammatory interleukin-10. Using confocal intravital microscopy, we found that transplanted cells had emigrated into the brain parenchyma and that RNA-seq analysis of explanted HSPCs indicated significantly increased levels of metallothionein transcripts, in particular MT-1. We further determined that treatment of mice with MT-1 significantly reduced neurological score and IV.; Conclusions: These studies provide further evidence for HSPCs as a promising therapeutic strategy in promoting repair following cerebral I/RI, potentially via a MT-1 mechanism. SOURCE: Seiichi Omura (omura.s@hotmail.com) - Kindai University Faculty of Medicine
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team