PLX314716
GSE95822: Length-independent telomere damage drives cardiomyocyte senescence
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Ageing is the biggest risk factor to cardiovascular health and is associated with increased incidence of cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening has been implicated in age-related cardiac dysfunction. However, the role of cellular senescence and its underlying mechanisms in slowly dividing/post-mitotic cardiomyocytes is not understood. SOURCE: Neil,Alistair,Robertson (neil.alistair.robertson@hotmail.co.uk) - P. Adams University of Glasgow
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team