Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreSquamous cell lung carcinoma (SCC) corresponds to about 25% of all lung cancers. Therapeutic approaches are very limited and platinum-based chemotherapy remains the main treatment option. Despite multiple studies, there are no generally accepted predictive biomarkers for SCC. Transforming growth factor- (TGF) signaling was shown to be implicated in numerous pro-tumorigenic processes, including immune evasion, inflammation and cancer metastasis. In the context of SCC epithelial-to-mesenchymal transition phenotype that is commonly mediated by TGF was widely observed in surgically resected specimens. However, the relation between TGF-induced changes and SCC progression remains to be elucidated. In the presented work, we combined phenotypic and transcriptome-wide approaches to identify novel predictive biomarkers for SCC. We show that TGF treatment activated Smad-mediated signal transduction and resulted in increase of migratory and invasive properties of SK-MES1 cells. Multiple actin cytoskeleton-related proteins, including myosin motor proteins such as Myosin-X, were up-regulated upon TGF stimulation. siRNA-mediated knockdown of Myosin-X completely abrogated TGF-induced collagen gel invasion. Finally, analysis of mRNA expression in paired surgically resected tissues of 151 SCC patients with corresponding 80-month clinical follow-up, showed that the mRNA expression ratio of Myosin-X in tumor and adjacent non-tumor tissue is predictive for overall survival and chemotherapy resistance independently of tumor stage. Given Myosin-X role in cellular motility and invasion, it can represent a new biomarker for aggressive disease and serve as a potential molecular target for therapeutic intervention in patients with SCC. SOURCE: Hauke Busch (hauke.busch@uni-luebeck.de) - University of Lübeck
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team