PLX266272

GSE95376: RNA-Sequencing Reveals Genome-Wide LncRNAs Profiling Associated with Early Development of Diabetic Nephropathy

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project Gene expression profiles of Type 1 diabetes

In early development of diabetic nephropathy (DN), pathogenesis remains largely unknown. We used RNA-sequencing to profile protein-coding and long non-coding RNA (lncRNA) gene transcriptome of mouse kidney proximal tubular cells during early stage of DN at various time points. Over 7000 protein-coding and lncRNA genes were differentially expressed, and most of them were time-specific. Nearly 40% of lncRNA genes overlapped with functional element signals using CHIP-Seq data from ENCODE database. Disease progression was characterized by lncRNA expression patterns, rather than protein-coding genes, indicating that the lncRNA genes are potential biomarkers for DN. For gene ontologies related to kidney, enrichment was observed in protein-coding genes co-expressed with neighboring lncRNA genes. Based on protein-coding and lncRNA gene profiles, clustering analysis reveals dynamic expression patterns for kidney, suggesting that they are highly correlated during disease progression. To evaluate translation of mouse model to human conditions, we experimentally validated orthologous genes in human cells in vitro diabetic model. In mouse model, most gene expression patterns were repeated in human cell lines. These results define dynamic transcriptome and novel functional roles for lncRNAs in diabetic kidney cells; these roles may result in lncRNA-based diagnosis and therapies for DN. SOURCE: Xiaoke Ma (xkma@xidian.edu.cn) - Xidian University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team