Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreStudying transcription factor (TF) interactions and gene regulatory networks in breast cancer, we have recently identified two distinct and opposing clusters of TFs associated with estrogen receptor-positive and -negative breast cancer and breast cancer risk. The relative activity of these two groups of TFs has a dramatic effect on patient outcomes and is likely to influence the phenotypic plasticity observed in breast cancer. We have identified two novel interactors (NFIB and YBX1) of the estrogen receptor (ESR1) using Rapid Immunoprecipitation Mass Spectrometry of Endogenous Proteins (RIME), co-immunoprecipitation and microscopy experiments. Both NFIB and YBX1 are members of the group of risk TFs that oppose the activity of the risk TFs associated with estrogen receptor-positive disease, and we have demonstrated that they both repress the transcriptional activity of ESR1. Here, we examine the effect of NFIB and YBX1 overexpression on the transcriptome of an estrogen receptor-positive breast cancer cell line to see if these risk TFs are able to repress the ESR1 regulon and drive cells towards a less estrogen-dependent phenotype. SOURCE: Kerstin Meyer University of Cambridge
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team