Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAdenosine-to-Inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive feature of the epitranscriptome. There are estimated to be over 100 million potential A-to-I editing sites in humans and A-to-I editing can have varying consequences for gene expression. Whilst editing resulting in protein recoding defines the role of ADAR2, ADAR1 has been proposed to have both editing-dependent and -independent functions. The relative contribution of these putative functions to ADAR1 biology is unclear. We demonstrate that the absence of ADAR1-mediated editing is well tolerated when the cytosolic dsRNA sensor MDA5 is deleted. These mice have normal hematopoiesis, tissue patterning and life span. A direct comparison of the complete deletion of ADAR1 and the specific loss of A-to-I editing activity demonstrates that RNA editing is the only essential function of ADAR1 in adult mice. Therefore, preventing MDA5 substrate formation by endogenous RNA is the essential in vivo function of ADAR1-mediated editing. SOURCE: Alistair,Morgan,Chalk (alistair.chalk@gmail.com) - Walkley St Vincent's Institute of Medical Research
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team