PLX156661
GSE89520: Lamins organize the three dimensional genome from nuclear periphery in ES cells
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Lamins are the major structural components of the nuclear lamina (NL) beneath the inner nuclear membrane. Although lamins are believed to regulate genome organization and transcription, how they perform these functions remains poorly understood. Combining Hi-C with fluorescence in situ hybridization (FISH) and Histone and Lamina landscape (HiLands) analyses of chromatin domains, we show that lamins differentially regulate the NL-associated HiLands-P and -B domains in mouse ES cells (mESCs). Lamin loss leads to HiLands-P expansion at the NL, detachment of HiLands-B from the NL, and genome-wide changes of 3D chromatin interactions in NL-associated and interior HiLands in mESCs. Further epigenome and transcriptome analyses show that lamins can function from the NL to maintain the boundaries of active and repressive chromatin domains, thereby influencing gene expression throughout the genome. These findings should provide the basis to further understand how changes in the NL-associated chromatin influence transcription in development and NL-associated diseases. SOURCE: Yixian Zheng (zheng@ciwemb.edu) - Yixian Zheng Carnegie Institution for Science
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team