Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MorePrimordial germ cell (PGC) development is characterized by global epigenetic remodeling, which resets genomic potential and establishes an epigenetic ground state. Here we recapitulate PGC specification in vitro from naive embryonic stem cells and characterize the early events of epigenetic reprogramming during the formation of the human and mouse germline. Following rapid de novo DNA methylation during priming to epiblast-like cells, methylation is globally erased in PGC-like cells (PGCLCs). Repressive chromatin marks (H3K9me2/3) and transposable elements are enriched at demethylation resistant regions, while active chromatin marks (H3K4me3 or H3K27ac) are more prominent at regions that demethylate faster. The dynamics of specification and epigenetic reprogramming show species-specific differences, in particular markedly slower reprogramming kinetics in the human germline. Differences in developmental kinetics between species may be explained by differential regulation of epigenetic modifiers. Our work establishes a robust and faithful experimental system of the early events of epigenetic reprogramming and its regulation in the germline. SOURCE: Felix Krueger (felix.krueger@babraham.ac.uk) - The Babraham Institute
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team