Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreCHD8 (chromodomain helicase DNA binding protein 8), which codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, is the most commonly mutated gene in autism spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also been found in schizophrenia (SZ) and intellectual disabilities, and affects cancer cell proliferation. To better understanding the molecular links between CHD8 functions and ASD, we have applied the CRISPR/Cas9 technology to knockout (KO) one copy of CHD8 in induced pluripotent stem cells (iPSCs) and build cerebral organoids, a model for the developing telencephalon. RNA-seq was carried out on KO organoids (CHD8+/-) and isogenic controls (CHD8+/+). Differentially expressed genes (DEGs) revealed an enrichment of genes involved in neurogenesis, forebrain development, Wnt/-catenin signaling and axonal guidance. The SZ and bipolar disorder (BD) candidate gene TCF4 was significantly upregulated. Our CHD8 KO DEGs were significantly overlapped with those found in a transcriptome analysis using cerebral organoids derived from a family with idiopathic ASD and another transcriptome study using iPS cell-derived neurons from patients with BD, a condition characterized in a subgroup of patients by dysregulated WNT/-catenin signaling. Overall, the findings show that distinct ASD, SZ and BD candidate genes converge on common molecular targets - an important consideration for developing novel therapeutics in genetically heterogeneous complex traits. SOURCE: Ping Wang (ping.wang@einstein.yu.edu) - Albert Einstein College of Medicine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team