PLX036852

GSE80551: RNA-Seq following PCR-based sorting reveals rare cell transcriptional signatures

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Rare cell subtypes can profoundly impact the course of human health and disease, yet their presence within a sample is often missed with bulk molecular analysis. Single-cell analysis tools such as FACS, FISH-FC and single-cell barcode-based sequencing can investigate cellular heterogeneity; however, they have significant limitations that impede their ability to identify and transcriptionally characterize many rare cell subpopulations.; Results: PCR-activated cell sorting (PACS) is a novel cytometry method that uses single-cell TaqMan PCR reactions performed in microfluidic droplets to identify and isolate cell subtypes with high-throughput. Here, we extend this method and demonstrate that PACS enables high-dimensional molecular profiling on TaqMan-targeted cells. Using a random priming RNA-Seq strategy, we obtained high-fidelity transcriptome measurements following PACS-sorting of prostate cancer cells from a heterogeneous population. The sequencing data revealed prostate cancer gene expression profiles that were obscured in the unsorted populations. Single-cell expression analysis with PACS was subsequently used to confirm a number of the differentially expressed genes identified with RNA sequencing.; Conclusions: PACS requires minimal sample processing, uses readily available TaqMan assays and can isolate cell subtypes with high sensitivity. We have now validated a method for performing next-generation sequencing on mRNA obtained from PACS isolated cells. This capability makes PACS well suited for transcriptional profiling of rare cells from complex populations to obtain maximal biological insight into cell states and behaviors. SOURCE: Maurizio Pellegrino Mission Bio

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team