PLX150730
GSE72851: Intragenic DNA methylation prevents cryptic transcription initiations on gene bodies [ART-seq]
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
In mammals, DNA methylation occurs mainly at 5mC of CpG dinucleotides. The methylation on the promoter leads to the suppression of gene expression, while the functional role of gene body DNA methylation in highly expressed genes has yet to be clarified. Here, we show that the Dnmt3b-dependent intragenic DNA methylation protects the gene body from RNA Polymerase II (RNA Pol II) spurious entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that loss of Dnmt3b leads to an increase of the RNA Pol II engagement within gene bodies and spurious intragenic transcription initiation events. Furthermore, inhibition of RNA Pol II spurious entry depends on the enzymatic activity of the Dnmt3b recruited by H3K36me3. Thus, elongating RNA Pol II triggers an epigenetic crosstalk that involves SetD2, H3K36me3, Dnmt3b, and DNA methylation to ensure gene transcription initiation fidelity with implications for intragenic hypomethylation in cancer. SOURCE: Francesco Neri (francesco.neri@hugef-torino.org) - HuGeF
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team