PLX230350
GSE70819: Spatially distinct neutrophil responses within the inflammatory lesions of pneumonic plague
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
During pneumonic plague, the bacterium Yersinia pestis elicits the development of inflammatory lung lesions that continue to expand throughout infection. This lesion development and persistence is poorly understood. Here, we examine spatially distinct regions of lung lesions using laser capture microdissection and RNAseq analysis to identify transcriptional differences between lesion microenvironments. We show that cellular pathways involved in leukocyte migration and apoptosis are down regulated in the center of lung lesions compared to the periphery. Probing for the bacterial factor(s) important for the alteration in neutrophil survival, we show both in vitro and in vivo that Y. pestis increases neutrophil survival in a manner that is dependent on the type-III secretion system effector YopM. This research explores the complexity of spatially distinct host - microbe interactions and emphasizes the importance of cell relevance in assays in order to fully understand Y. pestis virulence. SOURCE: William,Evan,Goldman (wgoldman@email.unc.edu) - Goldman University of North Carolina at Chapel Hill
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team