PLX107202
GSE53743: Translational profiling in the unfolded protein response
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
The unfolded protein response (UPR) couples cellular translation rates and gene expression to the protein folding status of the endoplasmic reticulum (ER). Upon activation, the UPR machinery elicits a general suppression of protein synthesis and activation of stress gene expression, which act coordinately to restore protein folding homeostasis. We report here that UPR activation promotes the release of signal sequence-encoding mRNAs from the ER to the cytosol as a mechanism to decrease protein influx into the ER. This release of mRNA begins rapidly, then gradually recovers with ongoing stress. Upon release into the cytosol, these mRNAs have divergent fates: some synthesize full-length proteins, while others are translationally inactive and retain nascent protein chains. Together, these findings identify the dynamic subcellular localization of mRNAs and translation as a regulatory feature of the cellular response to protein folding stress. SOURCE: David ReidNicchitta Duke University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team