PLX115591
GSE157292: Single-cell transcriptomics of mouse kidney transplants reveals a potentially novel myeloid cell pathway for transplant rejection
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
We used a murine kidney transplantation model and single-cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques including machine learning, we demonstrated that kidney allograft-infiltrating myeloid cells followed a trajectory of differentiating from monocytes to pro-inflammatory macrophages, and exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase familyTAM(Tyro3/Axl/Mertk). SOURCE: Xunrong Luo (xunrong.luo@duke.edu) - Rm 2019 Duke University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team