PLX151095

GSE154516: Transforming growth factor beta signaling and decidual development in mice

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Transforming growth factor (TGF) signaling regulates multifaceted reproductive processes via its transmembrane receptor complex-associated machinery. It has been shown that the type 1 receptor of TGF (TGFBR1) is indispensable for female reproductive tract development, pregnancy success, and fertility. However, the role of TGF signaling in decidual development and function remains poorly defined. Our objective is to determine the impact of uterine-specific deletion of Tgfbr1 on the differentiation of endometrial stromal cells in pregnant mice, with a focus on the cellular and molecular properties of the decidua. An approach combining histological and immunohistochemical analyses, quantitative PCR, western blot, and RNA-sequencing was utilized. Our results show that decidual development is altered in TGFBR1 conditionally depleted uteri, substantiated by downregulation of genes associated with inflammatory response and uterine natural killer cell abundance, reduced presence of non-decidualized fibroblasts in the antimesometrial region, and impaired decidual cell differentiation. Notably, conditional ablation of TGFBR1 results in the formation of decidua containing more abundant alpha smooth muscle actin (ACTA2)-positive cells at the peripheral region of the antimesometrial side versus controls. This finding is corroborated by upregulation of a subset of smooth muscle marker genes in Tgfbr1 conditionally-deleted decidua. The abnormal cell differentiation is accompanied with increased cell proliferation and enhanced decidual ERK1/2 signaling upon decidual regression. In summary, this study has identified an important role of TGFBR1 in decidual cell differentiation by revealing that conditional ablation of TGFBR1 in the uterus profoundly impacts the cellular and molecular properties of the decidua. Our results suggest that TGFBR1 is required for the development of an integral decidua, a transient but crucial structure that supports embryo development. SOURCE: Qinglei Li Texas A&M University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team