Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreLoss of normal tissue architecture is a hallmark of oncogenic transformation. Mechanical forces sculpt tissue architectures during morphogenesis. However, their origins and consequences during tumorigenesis remain elusive. In skin, premalignant basal cell carcinomas (BCCs) form buds, while invasive squamous cell carcinomas (SCC) initiate as folds. Using computational modeling, genetic manipulations and biophysical measurements, we identify the biophysical underpinnings and biological consequences of these tumor architectures. Cell proliferation and actomyosin contractility dominate tissue architectures in monolayer, but not multilayer epithelia. In stratified epidermis, softening and enhanced remodeling of the basement membrane (BM) promote tumor budding, while BM stiffening promotes folding. We show that additional key forces stem from progenitor cell stratification and differentiation Tumor-specific suprabasal stiffness gradients are generated as oncogenic lesions progress toward malignancy, which we computationally predict alter extensile tensions on the tumor BM. The pathophysiologic ramifications of this prediction are profound. Genetically decreasing BM stiffness elevates BM tensions in silico and potentiates invasive SCC progression in vivo. Our findings suggest that mechanical forces, exerted from above and below progenitors of multilayered epithelia, are integrally linked and function to shape premalignant tumor architectures and influence tumor progression. SOURCE: Vincent Fiore (vfiore@rockefeller.edu) - Rockefeller University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team