PLX033512

GSE152446: Cigarette Smoke Induces NOTCH3 Activation to Promote Goblet Cell Differentiation in Nonsmoker and COPD Airway Epithelial Cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death in the United States and is caused primarily by cigarette smoking. Increased numbers of mucus-producing secretory (goblet) cells defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. To this end, primary human bronchial epithelial cells (HBECs) from nonsmokers and COPD smokers were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using (1) the NOTCH/-secretase inhibitor Dibenzazepine (DBZ), (2) lentiviral over-expression of the NOTCH3-intracellular domain (NICD3) or (3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by qPCR, Western blotting, immunostaining and RNA-Seq. Our data demonstrate that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Over-expression of NICD3 increased expression of the goblet cell associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a potential strategy to control GCMH-related pathologies in smokers and patients with COPD. SOURCE: Jonathan Wrem (Jonathan-Wren@omrf.org) - OMRF

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team