PLX055597

GSE150728: A single-cell atlas of the peripheral immune response to severe COVID-19

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project COVID-19 transcriptomics

There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2 which has infected more than 3 million people worldwide. Approximately 20% of patients with COVID-19 develop severe disease and 5% require intensive care. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines that may be produced by a subset of inflammatory monocytes, lymphopenia, and T cell exhaustion. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from 7 patients hospitalized for COVID-19 and 6 healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene (ISG) signature, HLA class II downregulation, and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.; ; Sample IDs used in the manuscript were shortened for clarity. They relate to the titles of deposited files as follows: ; covid_555_1: C1 A; covid_555_2: C1 B; covid_556: C2; covid_557: C3; covid_558: C4; covid_559: C5; covid_561: C7; HIP002: H1; HIP015: H2; HIP023: H3; HIP043: H4; HIP044: H5; HIP045: H6 SOURCE: Catherine Blish (awilk@stanford.edu, cblish@stanford.edu) - Stanford University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team