PLX290116

GSE149243: Increased processing of SINE B2 non coding RNAs unveils a novel type of transcriptome de-regulation underlying amyloid beta neuro-pathology

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

More than 97% of the mammalian genome is non-protein coding, and repetitive elements account for more than 50% of noncoding space. However, the functional importance of many non-coding RNAs generated by these elements and their connection with pathologic processes remains elusive. We have previously shown that B2 RNAs, a class of non-coding RNAs that belong to the B2 family of SINE repeats, mediate the transcriptional activation of stress response genes (SRGs) upon application of a stimulus. Notably, B2 RNAs bind RNA Polymerase II (RNA Pol II) and suppress SRG transcription during pro-stimulation state. Upon application of a stimulus, B2 RNAs are processed into fragments and degraded, which in turn releases RNA Pol II from suppression and upregulates SRGs. Here, we demonstrate a novel role for B2 RNAs in transcriptome response to amyloid beta toxicity and pathology in mouse hippocampus. In healthy hippocampi, activation of SRGs is followed by a transient upregulation of pro-apoptotic factors, such as p53 and miRNA-34c, which target SRGs creating a negative feedback loop that facilitates return to the pro-stimulation state. Using an integrative RNA genomics approach, we show that in mouse hippocampi with amyloid pathology and in an in vitro cell culture model of amyloid beta toxicity, this regulatory loop is dysfunctional due to increased levels of B2 RNA processing, constitutively elevated SRG expression and high p53 levels. Evidence indicates that Hsf1, a master regulator of stress response, mediates B2 RNA processing in cells, and is upregulated during amyloid toxicity accelerating the processing of SINE RNAs and SRG hyper-activation. This data attributes a role to SINE RNA processing in a pathological process as well as a new function to Hsf1 that is independent of its transcription factor activity. Our study reveals that in mouse, SINE RNAs constitute a novel pathway deregulated in amyloid beta pathology, with potential implications for similar cases in the human brain, such as Alzheimers disease (AD). SOURCE: Athanasios Zovoilis University of Lethbridge

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team