PLX069757

GSE148118: Inhibition of Apoptosis Reduces Diploidization of Haploid Mouse Embryonic Stem Cells during the Differentiation

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Phenotypes of haploid embryonic stem cells (haESCs) are dominant for recessive traits in mice. However, one major obstacle to their use is self-diploidization in daily culture. Although haESCs maintain haploidy well by deleting p53, whether they can sustain haploidy in differentiated status and the mechanism behind remain unknown. To address that, we induced p53-deficient haESCs into multiple differentiated lineages keeping a haploid status in vitro. Besides, haploid cells also remained in chimeric embryos and teratomas arising from p53-null haESCs. Transcriptome analysis revealed that apoptosis genes were down-regulated in p53-null haESCs, comparing to that in wild-type haESCs. Finally, we knocked-out p73, another apoptosis gene, and observed stabilization of haploidy in haESCs, either. These results indicated that the main mechanism of diploidization was apoptosis-related genes triggered cell death in haploid cell cultures. Thus, we can derive haploid somatic cells by manipulating apoptosis gene, facilitating genetic screens of lineage-specific development. SOURCE: Ling Shuai (lshuai@nankai.edu.cn) - Stem cells and Genetics Nankai University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team