PLX098193

GSE147091: Reversal of pre-existing NGFR-driven tumor and immune therapy resistance

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

In spite of the remarkable clinical benefit from immune checkpoint blockade in melanoma, both intrinsic and acquired resistance prevent durable clinical responses in many patients. Whereas melanomas are known to acquire MART-1 T cell resistance by reversible phenotype switching to an NGFRhi state, less is known about mechanisms of intrinsic immune resistance. To mimic recurrent T cell attack, we chronically exposed a panel of (patient-derived) melanoma cell lines to clinically relevant MART-1 differentiation antigen-specific cytotoxic T cells. This led to strong enrichment of a pre-existing cell population that exhibited immune resistance in vitro and in mice. These fractions showed high expression of NGFR, were maintained stably, and were found to be present in patients melanomas prior to treatment. Remarkably, these NGFRhi melanoma cells also displayed resistance also to T cells recognizing antigens that are unrelated to melanoma differentiation. Furthermore, these cells exhibited multidrug-resistance to other therapies including BRAF + MEK inhibition, suggesting that they exist in a stable and distinct cellular state. Clinically corroborating these findings, a tumor-intrinsic NGFR signature predicted aPD-1 therapy resistance, while NGFRhi melanoma fractions in patients were associated with immune exclusion. Lastly, genetic or pharmacologic NGFR inhibition restored tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention. SOURCE: Oscar Krijgsman (o.krijgsman@nki.nl) - Peeper Netherlands Cancer Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team