PLX307037

GSE144726: Prominin-1-expressing Hepatic Progenitor Cells Induce Fibrogenesis in Murine Cholestatic Liver Injury

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: Cholestatic liver injury is associated with intrahepatic biliary fibrosis, which can progress to cirrhosis. Resident hepatic progenitor cells (HPCs) expressing Prominin-1 (Prom1/CD133) become activated and participate in the expansion of cholangiocytes known as the ductular reaction. Previously, we demonstrated that in biliary atresia, Prom1(+) HPCs are present within developing fibrosis and that null mutation of Prom1 significantly abrogates fibrogenesis. Here, we hypothesized that these activated Prom1-expressing HPCs promote fibrogenesis in cholestatic liver injury.; Methods: Using Prom1CreERT2-nLacZ/+;Rosa26Lsl-GFP/+ mice, we traced the fate of Prom1-expressing HPCs in the growth of the neonatal and adult livers and in biliary fibrosis induced by bile duct ligation (BDL).; Results: Prom1-expressing cell lineage labeling with Green Fluorescent Protein (GFP) on postnatal day 1 exhibited an expanded population as well as bipotent differentiation potential towards both hepatocytes and cholangiocytes at postnatal day 35. However, in the adult liver, they lost hepatocyte differentiation potential. Upon cholestatic liver injury, adult Prom1-expressing HPCs gave rise to both PROM1(+) and PROM1(-) cholangiocytes contributing to ductular reaction without hepatocyte or myofibroblast differentiation. RNA-sequencing analysis of GFP(+) Prom1-expressing HPC lineage revealed a persistent cholangiocyte phenotype and evidence of Transforming Growth Factor-b pathway activation.; Conclusion: Our data indicate that Prom1-expressing HPCs promote biliary fibrosis by activation of myofibroblasts in cholestatic liver injury. SOURCE: Celia,Anne,Short (cshor4@lsuhsc.edu, celia.short.md@gmail.com) - Kasper Wang Lab Children's Hospital Los Angeles

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team