PLX304931

GSE144682: The role of long noncoding RNAs during pancreas development

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

LncRNAs are developmentally regulated and highly cell type-specific non-coding RNAs that have emerged as important regulators of cell fate commitment and maintenance. In this study, we dissected the role of lncRNAs in human pancreas development by classifying lncRNAs based on their dynamic regulation, subcellular localization, and engagement with ribosomes during the stepwise differentiation of human embryonic stem cells (hESCs) towards pancreatic fate. We then deleted 10 candidate lncRNAs in hESCs and characterized the knockout phenotypes of pancreatic developmental intermediates, prioritizing dynamically regulated lncRNAs with validated translation potential and proximity to developmental TFs. This small-scale loss-of-function screen revealed that most lncRNAs are dispensable for pancreatic development and the regulation of nearby genes. We identify LINC00261 as the first translated lncRNA involved in human endocrine cell development, and show that it regulates gene expression in pancreatic progenitor cells in trans rather than cis. Through systematic dissection of LINC00261's coding and noncoding functions, we can exclude a role for the produced micropeptides in this process. Instead, we posit that, over the course of pancreatic differentiation, the biological activity of multiple lncRNAs is controlled by a regulatory, translation machinery dependent mechanism that employs ribosome engagement and short open reading frame translation to dose lncRNA activity in the nucleus. It is conceivable that inadequate nuclear LINC00261 dosage during human pancreas development could predispose individuals to developing diabetes. SOURCE: Maike Sander (masander@ucsd.edu) - UC San Diego

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team