PLX256243

GSE144290: Next Generation Sequencing Facilitates Quantitative Analysis of 231 and Pep-E3 cells' Transcriptomes in breast cancer

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to analysis the differiational genes and pathways in 231 and Pep-E3 breast cancer cells by using NGS-derived breast cancer transcriptome profiling (RNA-seq).; Methods: 231 and Pep-E3 cells' mRNA profiles were generated by deep sequencing, in triplicate, using Illumina HiSeq 4000. The sequence reads that passed quality filters were analyzed at the transcript isoform level with following methods: Alignment by using HISAT2 v2.1, IGV was used to to view the mapping result by the Heatmap, histogram, scatter plot or other stytle, FPKM was then calculated to estimate the expression level of genes in each sample, DEGseq v1.18.0 was used for differential gene expression analysis between two samples with non biological replicates and Function Enrichment Analysis including GO enrichment analysis and KEGG .; Conclusions: Our study represents the first detailed analysis of 231 and Pep-E3 cells' transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. SOURCE: Tingting Zhang (zhangtt1234@imm.ac.cn) - Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team