PLX176978

GSE143696: Mutant p53 regulates survivin to foster lung metastasis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Esophageal cancer is one of the most common cancers where TP53 is mutated frequently. Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer, and is one of the most lethal cancers worldwide. ESCC evolves often to lung metastasis, which is associated with a dismal prognosis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC, or cancers in general, remains to be elucidated. To investigate p53R175H mediated molecular mechanisms, we utilized germline Trp53R172H/- mice, and generated esophageal specific Trp53-/- mice and Trp53+/+ mice treated with the 4-NQO esophageal-specific carcinogen (a common exposure in humans) to model ESCC. In the primary Trp53R172H/- tumor cell lines established from these mouse models, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, to understand the molecular basis for mutant p53 driven lung metastasis, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We performed Gene Set Enrichment Analysis (GSEA) and identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H mediated metastasis. As a target gene of YAP, BIRC5 encodes an anti-apoptotic protein, namely survivin. We demonstrate that survivin expression increases in the presence of Trp53R172H but not wild-type Trp53. Furthermore, depletion of survivin decreases Trp53R172H driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce survivin expression. Furthermore, survivin high expression level is associated with increased metastasis in several GI cancer, suggesting that survivin may be a key regulator to metastasis. Taken together, this study unravels new insights into how mutant p53 mediates metastasis. SOURCE: Mirazul Islam (mirazul.du.bc@gmail.com) - Adam Bass Lab DFCI

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team