PLX102288
GSE140936: Chromatin Remodeling and Immediate Early Gene Activation by SLFN11 in Response to Replication Stress [RNA-seq_CHK1i]
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Schlafen 11 (SLFN11) has recently arisen as a novel cellular restriction factor against replication stress. Here we show that SLFN11 increases chromatin accessibility genome-wide, dominantly at promoters in response to replication stress induced by the CHK1 inhibitor prexasertib and the topoisomerase I inhibitor, camptothecin. Concomitantly SLFN11 selectively activates cellular stress response pathways by inducing the transcription of the Immediate Early Genes (IEGs) including JUN, FOS, EGR1, NFKB2 and ATF3. Both chromatin opening and IEG activation require the putative helicase activity of SLFN11 whereas extrinsic IEG activation by serum induction is SLFN11-independent. SLFN11-dependent IEG activation is also observed across 55 non-isogenic NCI-60 cell lines by comparing transcriptome data before and after camptothecin treatment. We conclude that SLFN11 acts as a global regulator of chromatin structure and an intrinsic IEG activator with the potential to engage the native immune activation in response to replicative stress. SOURCE: Junko Murai (muraij@ttck.keio.ac.jp) - Keio University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team