Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreOur goal was to identify gene expression and functional differences between directly reprogrammed vascular cells derived from young and old individuals, as wells as from healthy and Hutchinson-Gilford Progeria Syndrome (HGPS) donors. We provided a full characterization of reprogrammed endothelial and smooth muscle cells by comparing their gene expression with both the original fibroblasts and primary vascular cells, showing that reprogrammed cells express key vascular cell-identity genes and contribute to the formation of in vitro 3D vascular structures. We identified and validated biomarkers of vascular dysfunction in the context of physiological and accelerated aging typical of HGPS patients, and we demonstrated their direct contribution in the modulation of vascular permeability. SOURCE: Ling Huang (lhuang@salk.edu) - The Salk Institute
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team