PLX033398

GSE140523: Tissue specific human fibroblast differential expression based on RNAsequencing analysis

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background:Physical forces, such as mechanical stress, are essential for tissue homeostasis and influence geneexpression of cells. In particular, the fibroblast has demonstrated sensitivity to extracellular matrices with assumedadaptation upon various mechanical loads. The purpose of this study was to compare the vocal fold fibroblastgenotype, known for its unique mechanically stressful tissue environment, with cellular counterparts at various otheranatomic locales to identify differences in functional gene expression profiles.; Results:By using RNA-seq technology, we identified differentially expressed gene programs (DEseq2) among sevennormal human fibroblast primary cell lines from healthy cadavers, which included: vocal fold, trachea, lung, abdomen,scalp, upper gingiva, and soft palate. Unsupervised gene expression analysis yielded 6216 genes differentially expressedacross all anatomic sites. Hierarchical cluster analysis revealed grouping based on anatomic site origin rather thandonor, suggesting global fibroblast phenotype heterogeneity. Sex and age-related effects were negligible. Functionalenrichment analyses based on separate post-hoc 2-group comparisons revealed several functional themes within thevocal fold fibroblast related to transcription factors for signaling pathways regulating pluripotency of stem cells andextracellular matrix components such as cell signaling, migration, proliferation, and differentiation potential.; Conclusions:Human fibroblasts display a phenomenon of global topographic differentiation, which is maintained inisolation via in vitro assays. Epigenetic mechanical influences on vocal fold tissue may play a role in uniquely modellingand maintaining the local environmental cellular niche during homeostasis with vocal fold fibroblasts distinctlyspecialized related to their anatomic positional and developmental origins established during embryogenesis. SOURCE: Ziyue Wang (zwang667@wisc.edu) - UW Madison

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team