PLX018534
GSE138045: Genome-wide transcriptome alternation by DNA methylation inhibitor 5'-Aza in primary leiomyoma cells
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Uterine leiomyomas (LM) affect up to 80% of all reproductive-age women. LM growth requires progesterone, progesterone receptor (PGR), and the maintenance and proliferation of a small (5%) stem cell population. Stem cell activation and differentiation are driven by DNA methylation and nuclear hormone receptor action, but crosstalk between these mechanisms remains unclear. We performed an integrated analysis of the transcriptome and epigenetic landscape of LM cells at three differentiation stages and the PGR cistrome of whole LM tissue. The PGR-deficient stem cell population harbored a unique methylation landscape, with hypermethylation at the PGR gene locus and PGR-binding regions, which suppressed stem cell responsiveness to progesterone. The DNA methylation inhibitor 5-Aza upregulated the expression of PGR and its target genes by stimulating PGR recruitment to the targeted gene loci, and significantly depleted the LM stem cell population and its tumor-initiating capacity. We herein provided mechanistic insights via therapeutically accelerating the stem cell differentiation process of a hormone-sensitive tumor. SOURCE: Shimeng Liu (shimengliu2014@u.northwestern.edu) - Northwestern University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team