Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreDegradation of transcripts in mammalian nuclei is primarily facilitated by the RNA exosome. To obtain substrate specificity, the exosome is aided by adaptors; in the nucleoplasm, the Nuclear EXosome Targeting (NEXT) complex and the PolyA (pA) eXsome Targeting (PAXT) connection. However, how exact targeting is achieved remains enigmatic. Employing high-resolution 3end sequencing of both steady state and newly produced pA+ and pA- RNA, we demonstrate that NEXT substrates arise from heterogenous and predominantly pA- 3ends often covering kb-wide genomic regions. In contrast, PAXT targets harbor well-defined pA+ 3ends defined by canonical pA site usage. Irrespective this clear division, NEXT and PAXT act redundantly in two ways: i) Regional redundancy: The majority of exosome-targeted transcription units produce both NEXT- and PAXT-sensitive RNA isoforms; and ii) Isoform redundancy: The PAXT connection ensures the fail-safe decay of post-transcriptionally polyadenylated NEXT targets. In conjunction, this provides for the efficient nuclear removal of superfluous RNA. SOURCE: Manfred Schmid (ms@mbg.au.dk) - Torben Heick Jensen Aarhus University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team