PLX295472
GSE136840: The intestinal microbiota programs DNA methylation to control tissue homeostasis and inflammation [RNA-seq]
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Although much research has been done on the diversity of gut microbiome, little is known about the way it influences intestinal homeostasis under normal and pathogenic conditions. Epigenetic mechanisms have recently been suggested as operating at the interface between the microbiota and the intestinal epithelium cells (IECs). Using genome-wide analyses, we discovered that exposure to microbiota induced both global DNA hypomethylation and localized changes at regulatory elements, which culminates in activation of a set of early sentinel response genes that play a role in maintaining gut homeostasis. Furthermore, we demonstrated that exposure to microbiota in acute inflammation results in profound DNA methylation and chromatin accessibility changes at regulatory elements leading to alterations in the gene expression program in colitis and colon cancer. Our studies add a new dimension to our understanding of the cross talk between the microbiota and IECs, and provide the foundation for how microbiota impact epigenetic programming. SOURCE: Guenter Raddatz German Center for Cancer Research
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team