PLX208653

GSE136314: Kidney organoid reproducibility across multiple human iPSC lines and diminished off target cells after transplantation revealed by single cell transcriptomics

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we used single cell RNA-Seq (scRNA-Seq) to profile 450,118 cells to show that organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes were largely reproducible across iPSC lines, time points, protocols, and replicates, cell proportions were variable between different iPSC lines. Off-target cell proportions were the most variable. Prolonged in vitro culture did not alter cell types, but organoid transplantation under the mouse kidney capsule diminished off-target cells. Our work shows how scRNA-seq can help score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells. SOURCE: Anna Greka (agreka@broadinstitute.org) - Broad Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team