Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreMutations in SMARCA4, a central ATPase of the human BAF/PBAF chromatin remodeling complexes, cause developmental abnormalities and promote cancer development. The pathogenic effects of SMARCA4 loss are often linked to the de-regulation of a relatively small number of key target genes. Here, to understand how chromatin remodeling by SMARCA4 results in specific transcriptional perturbations, we used genome engineering to correct a homozygous mutation in SMARCA4 in the well-characterized lung adenocarcinoma A549 cell line and profiled changes in SMARCA2/4 occupancy, chromatin accessibility, histone marks and transcription. Restoration of SMARCA4 causes a dramatic increase in chromatin accessibility at low affinity TF binding sites. Despite the widespread increase in chromatin accessibility, we observe comparatively attenuated changes in gene expression. Although there is a marked correlation between the number of local activated DHSs and the transcriptional responsivity of a gene, the influence of distal DHSs appears modified by a gene's promoter architecture and domain-scale chromatin organization. The largest changes in expression occur for genes in isolated, SMARCA4 sensitive chromatin domains that undergo region-wide chromatin remodeling upon reintroduction of SMARCA4. Our results reveal that interactions between distal enhancers, genome organization, and promoter architecture add transcriptional specificity to the global chromatin effects of BAF/PBAF complex perturbation and target the response to key developmental pathways. SOURCE: John,A,Stamatoyannopoulos (jstam@altius.org) - Stamatoyannopoulos Altius Institute / University of Washington
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team