PLX291336

GSE130817: Transcriptional profiling of CART19 cells exposed to WT and BIDko Nalm6 cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cellular immunotherapy using T cells engineered to express chimeric antigen receptors targeting CD19 (CART19) leads to long-term remission in patients with B-cell malignancies1-5. Unfortunately, a significant fraction of patients demonstrate primary resistance to CART19 or experience relapse after achieving remission. Beyond loss of target antigen, the molecular pathways governing CART19 failure are unknown. Here we demonstrate that death receptors, cell surface signaling molecules that induce target cell apoptosis, are key mediators of leukemic resistance and CART19 failure. Using a functional CRISPR/Cas9-based genome-wide knockout screen6 in B-cell acute lymphoblastic leukemia (ALL), we identified the death receptor signaling pathway as a central regulator of sensitivity to CART19-induced cell death. In the absence of the pro-apoptotic death receptor signaling molecules BID or FADD, ALL cells were resistant to CART19 cytotoxicity, resulting in rapid disease progression in mice. We found that this initial resistance to cytotoxicity led to persistence of tumor cells, which drove the development of T cell dysfunction that further compromised anti-tumor immunity and permitted tumor outgrowth. We validated these findings using clinical samples collected from patients with ALL treated with CD19-targeted CAR T cells and found that expression of pro-apoptotic death receptor pathway genes in pre-treatment tumor samples correlated with CAR T cell expansion and persistence, as well as patient response and overall survival. Our findings indicate that tumor-intrinsic death receptor signaling directly contributes to CAR T cell failure. SOURCE: Nathan Singh (singh.nathan@gmail.com) - University of Pennsylvania

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team