PLX149860

GSE129843: Short-Term Time-Restricted Feeding Alters Rhythmicity of Lipid and Amino Acid Metabolites in Overweight Men

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Time-restricted feeding improves metabolic health independently of dietary macronutrient composition or energy restriction. To understand the mechanisms underpinning the effects of time-restricted feeding, we investigated the metabolic and transcriptomic profile of skeletal muscle and serum samples from 11 overweight/obese men. In muscle, 4-10% of transcripts and 14% of metabolites were periodic, with the amplitude of the metabolites lower after time-restricted feeding. Core clock genes were unaltered by either intervention, while time-restricted feeding induced rhythmicity of genes related to lipid and amino acid transport. In serum, 49-65% of the metabolites had diurnal rhythms across both conditions, with the majority being lipids. Time-restricted feeding shifted the skeletal muscle metabolite profile from predominantly lipids to amino acids. Our results show time-restricted feeding differentially affects the amplitudes and rhythmicity of serum and skeletal muscle metabolites, and regulates the rhythmicity of genes controlling lipid and amino acid transport, without perturbing the core clock. SOURCE: Lars,Roed,Ingerslev (ingerslev@sund.ku.dk) - Integrative Physiology Copenhagen University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team