Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreLoss of synchrony between geophysical time and insulin action predisposes to metabolic diseases. Yet, the brain and peripheral pathways linking proper insulin effect to diurnal changes in light/dark and feeding/fasting inputs are poorly understood. Here, we show that insulin sensitivity of several metabolically relevant tissues fluctuates during the 24-hour period. For example, in mice insulin sensitivity of skeletal muscle, liver, and adipose tissue is lowest during the light period. Mechanistically, by performing loss- and gain-of-light-action and food-restriction experiments, we demonstrate that SIRT1 in steroidogenic factor 1 (SF1) neurons of the ventromedial hypothalamic nucleus (VMH) conveys photic inputs toentrain the biochemical and metabolic action of insulin in skeletal muscle. These findings uncover a critical light-SF1-neuron-skeletal-muscle axis that acts to finely tune diurnal changes in insulin sensitivity and reveal a light regulatory mechanism of skeletal muscle function. SOURCE: Siwei Chen (siweic@uci.edu) - Pierre Baldi University of California, Irvine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team