PLX280326
GSE129143: A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules (RNA-Seq)
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed a multi-omics approach for uncovering MoAs through an interpretable machine learning model of the effects of compounds on transcriptomic, epigenomic, metabolomic, and proteomic data. We applied this approach to examine compounds with beneficial effects in models of Huntingtons disease, finding common MoAs for previously unrelated compounds that were not predicted based on similarities in the compounds structures, connectivity scores, or binding targets. We experimentally validated two such disease-relevant MoAs, autophagy activation and bioenergetics manipulation. This interpretable machine learning approach can be used to find and evaluate MoAs in future drug development efforts. SOURCE: Natasha Patel-Murray Massachusetts Institute of Technology
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team