Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreThe histone demethylase LSD1 is deregulated in several tumors, including leukemias, providing the rationale for the clinical use of LSD1 inhibitors . In acute promyelocytic leukemia (APL), pharmacological doses of retinoic acid (RA) induce differentiation of APL cells through degradation of the PML-RAR oncogene. APL cells are resistant to LSD1 inhibition or knock-out, but LSD1 inhibition sensitizes them to physiological doses of RA without altering the stability of PML-RAR, and extends survival of leukemic mice upon RA treatment. Non-enzymatic activities of LSD1 are essential to block differentiation of leukemic cells, while the combination of LSD1 inhibitors (or LSD1 knock-out) with low doses of RA releases a differentiation-associated gene expression program, not strictly dependent on changes in histone H3K4 methylation (known substrate of LSD1). An integrated proteomic/epigenomic/mutational analysis showed that LSD1 inhibitors alter the recruitment of LSD1-containing complexes to chromatin through inhibition of the interaction between LSD1 and GFI1, a relevant transcription factor in hematopoiesis. SOURCE: Saverio Minucci European Institute of Oncology
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team