PLX108752

GSE128458: Coordinated Enhancer Reprogramming by GATA3 and AP1 Promotes Cellular Plasticity to Achieve Breast Cancer Endocrine Resistance [RNA-Seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cellular plasticity has emerged as an important mechanism of therapy resistance in cancers, yet the underlying molecular mechanisms remain unclear. Using an established breast cancer cellular model for endocrine resistance, we show that hormone resistance is associated with enhanced cellular plasticity, indicated by a general downregulation of luminal/epithelial differentiation markers and upregulation of basal/mesenchymal invasive markers. Our extensive omics studies including GRO-seq on enhancer landscapes demonstrate that the global enhancer gain/loss reprogramming driven by the differential interactions between ER and other oncogenic transcription factors (TFs), predominantly GATA3 and AP1, profoundly alter breast cancer transcriptional programs. Our functional studies in various biological systems support a coordinated role of GATA3 and AP1-mediated enhancer reprogramming in driving cellular plasticity to achieve endocrine resistance or cancer invasive progression. Thus, changes in TF-TF and TF-enhancer interactions can lead to genome-wide enhancer reprogramming, resulting in transcriptional dysregulations that promote plasticity and cancer therapy-resistance progression. SOURCE: Zhijie,Jason,Liu (liuz7@uthscsa.edu) - Liu lab Universality of Texas Health Science Center at San Antonio

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team