PLX014121

GSE125511: -Caryophyllene Enhances the Transcriptional Upregulation of SREBP-dependent Lipid Biosynthesis in Breast Cancer Cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

-caryophyllene (BCP) exhibits anti-proliferative properties in cancer cells. Here, we examine the hypothesis that BCP induces membrane remodeling. Our data show that high concentrations of BCP increase membrane permeability of human breast cells (hBrC) causing detachment and cell death. At a sub-lethal concentration of BCP, we show that BCP induces a striking upregulation of genes involved in cholesterol biosynthesis, including the gene that encodes for HMGCoA reductase (HMGCR), the rate-determining step in cholesterol biosynthesis. In addition, stearoyl-CoA desaturase (SCD) is also upregulated which would lead to the enhanced formation of monounsaturated fatty acids, specifically oleate and palmitoleate from stearoyl CoA and palmitoyl CoA, respectively. These fatty acids are major components of membrane phospholipids and cholesterol esters. Together, these data suggest that cells respond to BCP by increasing the synthesis of components found in membranes. These responses could be viewed as a repair mechanism and/or as a mechanism to mount resistance to the cytotoxic effect of BCP. Blocking HMGCR enhances the cytotoxicity of BCP, suggesting that this may provide an additional therapeutic tool in controlling breast cancer cell growth, assuming that targeted specificity could be established. SOURCE: Christopher Frost (jasmonate@gmail.com) - University of Louisville

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team