PLX122456

GSE124706: Species-specific maturation profiles of human, chimpanzee and bonobo neural cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Understanding the evolutionary mechanisms underlying expansion and reorganization of the human brain is essential to comprehend the emergence of the cognitive abilities typical of our species. Comparative analyses of neuronal phenotypes in closely related species (Homo sapiens; human, Pan troglodytes; chimpanzees and Pan paniscus; bonobos) can shed light onto neuronal changes occurring during evolution, the timing of their appearance and the role of evolutionary mechanisms favoring a particular type of cortical organization in humans. The availability of post-mortem brains of endangered primates is limited and often does not represent important species-specific developmental hallmarks. We used induced pluripotent stem cell (iPSC) technology to model neural progenitor cell migration in Homo and Pan and early development of cortical pyramidal neurons in humans and chimpanzees after following cells grafted in vivo. We present results suggesting differential migration patterns in human neural progenitor cells compared to those of chimpanzees and bonobos in vitro and in vivo. Additionally, we reveal morphometric and functional differences that are suggestive of heterochronic changes in developing human neurons compared to chimpanzees. This report provides a comprehensive analysis of comparative neural development in closely related hominids. The strategy proposed here lays the groundwork for further comparative analysis between human and non-human primates and opens new avenues for understanding the differences in the neural underpinnings of cognition and neurological disease susceptibility between species. SOURCE: Fred,H,Gage (gage@salk.edu) - The Salk Institute for Biological Studies

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team