Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreSpecialized adult somatic cells, such as cardiomyocytes (CMs), are highly differentiated with poor renewal capacity, an integral reason underlying organ failure in disease and aging. Among the least renewable cells in the human body, CMs renew approximately 1% annually. Consistent with poor CM turnover, heart failure is the leading cause of death. Here, we show that an active version of the Hippo pathway effector YAP, termed YAP5SA, partially reprograms adult mouse CMs to a more fetal and proliferative state. One week after induction, 19% of CMs that enter S-phase do so twice, CM number increases by 40%, and YAP5SA lineage CMs couple to pre-existing CMs. Genomic studies showed that YAP5SA increases chromatin accessibility and expression of fetal genes, partially reprogramming long-lived somatic cells in vivo to a primitive, fetal-like, and proliferative state. SOURCE: Matthew,C,Hill (matthew.hill@bcm.edu) - Baylor College of Medicine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team