PLX259123

GSE122736: Convergence of Cockayne Syndrome Group A and B Proteins at rRNA Transcription through Nucleolin Regulation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cockayne Syndrome (CS) is a rare neurodegenerative disease characterized by short stature, cachexia, sun-sensitivity, accelerated aging, and short lifespan. Mutations in two human genes, ERCC8/CSA and ERCC6/CSB, are causative for CS and the protein products of these genes, CSA and CSB, while structurally unrelated, play roles in DNA repair and other aspects of DNA metabolism in human cells. Many clinical and molecular features of CS remain poorly understood, and it has been suggested that CSA and CSB regulate transcription of rDNA genes and ribosome biogenesis. The goal of this study was to investigate the dysregulation of rRNA synthesis in CS. Here, we report that Nucleolin (Ncl), a nucleolar protein that regulates rRNA synthesis and ribosome biogenesis, interacts specifically with CSA and CSB. In addition, CSA induces ubiquitination of Ncl, enhances binding of CSB to Ncl, and CSA and CSB both stimulate binding of Ncl to rDNA and subsequent rRNA synthesis. These findings suggest that CSA and CSB are positive regulators of rRNA synthesis via Ncl regulation. A majority of CS patients carry mutations in CSA and CSB and present with similar clinical features, thus our findings may provide novel insights into disease mechanism and the neuropathological features of CS. SOURCE: Kevin,G,Becker (beckerk@grc.nia.nih.gov) - Gene Expression and Genomics Unit National Institute on Aging, NIH

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team