PLX057808
GSE121877: Specifying the Anterior Primitive Streak by Modulating YAP1 Levels in Human Pluripotent Stem Cells
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Specifying the primitive streak (PS) guides stem cell differentiation in vitro, however much remains to be learned about the transcription networks that direct anterior and posterior PS cells (APS and PPS, respectively) to differentiate to distinct mesendodermal subpopulations. Here, we show that APS genes are predominantly induced in YAP1-/- hESCs in response to ACTIVIN. This finding establishes the Hippo effector YAP1 as a master regulator of PS specification, functioning to repress ACTIVIN-regulated APS genes in hESCs. Moreover, transient exposure of wild-type hESCs to dasatinib, a potent C-SRC/YAP1 inhibitor, enables differentiation to APS-derived endoderm and cardiac mesoderm in response to ACTIVIN. Importantly, these cells can differentiate efficiently to normal beating cardiomyocytes without the cytoskeletal defect seen in YAP1-/- hESC-derived cardiomyocytes. Overall, we uncovered an induction mechanism to generate APS cells using a cocktail of ACTIVIN and YAP1i molecules that holds practical implications for hESC and iPSC differentiation into distinct mesendodermal lineages. SOURCE: Ling Huang (lhuang@salk.edu) - The Salk Institute
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team