PLX248765

GSE121476: Poly(ADP-ribose) polymerase 1 is necessary for coactivating hypoxia-inducible factor-1-dependent gene expression by Epstein-Barr virus latent membrane protein 1

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Latent membrane protein 1 (LMP1) is the major transforming protein of Epstein-Barr virus (EBV) and is critical for EBV-induced B-cell transformation in vitro. Poly(ADP-ribose) polymerase 1 (PARP1) regulates accessibility of chromatin, alters functions of transcriptional activators and repressors, and has been directly implicated in transcriptional activation. Previously we showed that LMP1 activates PARP1 and increases Poly(ADP-ribos)ylation (PARylation) through PARP1. Therefore, to identify targets of LMP1 that are regulated through PARP1, LMP1 was ectopically expressed in an EBV-negative Burkitts lymphoma cell line. These LMP1-expressing cells were then treated with the PARP inhibitor olaparib and prepared for RNA sequencing. The LMP1/PARP targets identified through this RNA-seq experiment are largely involved in metabolism and signaling. Interestingly, Ingenuity Pathway Analysis of RNA-seq data suggests that hypoxia-inducible factor 1-alpha (HIF-1) is an LMP1 target mediated through PARP1. PARP1 is acting as a coactivator of HIF-1-dependent gene expression in B cells, and this co-activation is enhanced by LMP1-mediated activation of PARP1. HIF-1 forms a PARylated complex with PARP1 and both HIF-1 and PARP1 are present at promoter regions of HIF-1 downstream targets, leading to accumulation of positive histone marks at these regions. Complex formation, PARylation and binding of PARP1 and HIF-1 at promoter regions of HIF-1 downstream targets can all be attenuated by PARP1 inhibition, subsequently leading to a buildup of repressive histone marks and loss of positive histone marks. In addition, LMP1 switches cells to a glycolytic Warburg metabolism, preferentially using aerobic glycolysis over mitochondrial respiration. Finally, LMP1+ cells are more sensitive to PARP1 inhibition and, therefore, targeting PARP1 activity may be an effective treatment for LMP1+ EBV-associated malignancies. SOURCE: Jozef Madzo (jmadzo@temple.edu) - Room 220 Temple University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team