PLX166065

GSE121238: Transciptomic profiling of human fetal lung samples

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Fibroblast Growth Factor (FGF) signaling plays an important role in lung organogenesis. Over recent decades, FGF signaling in lung development has been extensively studied in animal models. However, little is known about the expression, localization and functional roles of FGF ligands during human fetal lung development. Therefore, we aimed to determine the expression and function of several FGF ligands and receptors in human lung development. Using in situ hybridization (ISH) and RNA-sequencing, we assessed their expression and distribution in native human fetal lung. Human fetal lung explants were treated with recombinant FGF7, FGF9 or FGF10 in air-liquid interface culture. Explants were analyzed grossly, to observe differences in branching pattern, as well as at the cellular and molecular level. ISH demonstrated that FGF7 is expressed in both the epithelium and mesenchyme; FGF9 is mainly localized in the distal epithelium, whereas FGF10 demonstrated diffuse expression throughout the parenchyma with some expression in the smooth muscle cells (SMCs). FGFR2 expression was high in both proximal and distal epithelial cells as well as the SMCs. FGFR3 was expressed mostly in the epithelial cells, with lower expression in the mesenchyme, while FGFR4 was highly expressed throughout the mesenchyme and in the distal epithelium. Using recombinant FGFs, we demonstrated that FGF7 and FGF9 had similar effects on human fetal lung as on mouse; however, FGF10 caused the human explants to expand and form cysts as opposed to inducing epithelial branching as seen in the mouse. In conjunction with decreased branching, treatment with recombinant FGF7, FGF9 and FGF10 also resulted in decreased double-positive SOX2/SOX9 progenitor cells, which are exclusively present in the distal epithelial tips in early human fetal lung. Although FGF ligand localization may be somewhat comparable between developing mouse and human lungs, their functional roles may differ substantially. SOURCE: Brendan,H,GrubbsGrubbs University of Southern California

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team