PLX251209

GSE120862: Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

In our study, we investigated for contractile activity-specific changes in the transcriptome in untrained and trained (after an aerobic training programme) human skeletal muscle. The second goal was to examine effect of aerobic training on gene expression in muscle at baseline (after long term training). Seven untrained males performed the one-legged knee extension exercise (for 60 min) with the same relative intensity before and after a 2 month aerobic training programme (1 h/day, 5/week). Biopsy samples were taken at rest (baseline condition, 48 h after exercise), 1 and 4 h after the one-legged exercise from m. vastus lateralis of either leg. Comparison of gene expression in exercised leg with that in non-exercised [control] leg allowed us to identify contractile activity-specific genes in both untrained and trained skeletal muscle, i.e., genes that play a key role in adapting to acute exercise, regardless of the level of fitness. RNA-sequencing (84 samples in total; ~47 million reads/sample) was performed by NextSeq 500 and HiSeq 2500 (Illumina). Two months aerobic training increased the aerobic capacity of the knee-extensor muscles (power at anaerobic threshold in the incremental one-legged and cycling tests), the maximum rate of ADP-stimulated mitochondrial respiration in permeabilized muscle fibres and amounts of oxidative phosphorylation proteins. Contractile activity-specific changes in the transcriptome in untrained and trained human skeletal muscle were revealed for the first time. After 2 month aerobic training, transcriptome responses specific for contractile activity in trained muscle substantially decreased relative to those in untrained muscle. We found out that adaptation of skeletal muscle to regular exercise is associated not only with a transient change in the transcriptome after each stress (acute exercise), but also with a marked change in baseline expression of many genes after repeated stress (e.g., long term training). SOURCE: Pavel Makhnovsky (maxpauel@gmail.com) - Laboratory of exercise physiology Institute of Biomedical problems of the Russian Academy of Sciences

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team